On Discrete Killing Vector Fields and Patterns on Surfaces

نویسندگان

  • Mirela Ben-Chen
  • Adrian Butscher
  • Justin Solomon
  • Leonidas J. Guibas
چکیده

Symmetry is one of the most important properties of a shape, unifying form and function. It encodes semantic information on one hand, and affects the shape’s aesthetic value on the other. Symmetry comes in many flavors, amongst the most interesting being intrinsic symmetry, which is defined only in terms of the intrinsic geometry of the shape. Continuous intrinsic symmetries can be represented using infinitesimal rigid transformations, which are given as tangent vector fields on the surface – known as Killing Vector Fields. As exact symmetries are quite rare, especially when considering noisy sampled surfaces, we propose a method for relaxing the exact symmetry constraint to allow for approximate symmetries and approximate Killing Vector Fields, and show how to discretize these concepts for generating such vector fields on a triangulated mesh. We discuss the properties of approximate Killing Vector Fields, and propose an application to utilize them for texture and geometry synthesis.

منابع مشابه

Yet Another Application of the Theory of ODE in the Theory of Vector Fields

In this paper we are supposed to define the θ−vector field on the n−surface S and then investigate about the existence and uniqueness of its integral curves by the Theory of Ordinary Differential Equations. Then thesubject is followed through some examples.

متن کامل

Discrete Topology-Revealing Vector Fields on Simplicial Surfaces with Boundary

We present a discrete Hodge-Morrey-Friedrichs decomposition for piecewise constant vector fields on simplicial surfaces with boundary which is structurally consistent with the smooth theory. In particular, it preserves a deep linkage between metric properties of the spaces of harmonic Dirichlet and Neumann fields and the topology of the underlying geometry, which reveals itself as a discrete de...

متن کامل

Generating Discrete Trace Transition System of a Polyhe-dral Invariant Hybrid Automaton

Supervisory control and fault diagnosis of hybrid systems need to have complete information about the discrete states transitions of the underling system. From this point of view, the hybrid system should be abstracted to a Discrete Trace Transition System (DTTS) and represented by a discrete mode transition graph. In this paper an effective method is proposed for generating discrete mode trans...

متن کامل

Tangent Bundle of the Hypersurfaces in a Euclidean Space

Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...

متن کامل

Intrinsic Local Symmetries: A Computational Framework

We present a computational framework for finding metric-preserving tangent vector fields on surfaces, also known as Killing Vector Fields. Flows of such vector fields define self-isometries of the surface, or in other words, symmetries. Our approach is based on general-purpose isometry-finding frameworks, and is shown to be robust to noise. In addition, we demonstrate symmetry recovery using no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Comput. Graph. Forum

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2010